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Abstract—The blood-brain barrier (BBB) serves as a protective
barrier that separates the brain from the circulatory system, regulating
the passage of substances into the central nervous system. Assessing
the BBB permeability of potential drugs is crucial for effective drug
targeting. However, traditional experimental methods for measuring
BBB permeability are challenging and impractical for large-scale
screening. Consequently, there is a need to develop computational
approaches to predict BBB permeability. This paper proposes a GPS
Transformer architecture augmented with Self Attention, designed
to perform well in the low-data regime. The proposed approach
achieved a state-of-the-art performance on the BBB permeability
prediction task using the BBBP dataset, surpassing existing models.
With a ROC-AUC of 78.8%, the approach sets a state-of-the-art by
5.5%. We demonstrate that standard Self Attention coupled with GPS
transformer performs better than other variants of attention coupled
with GPS Transformer.
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I. INTRODUCTION

The blood-brain barrier acts as a protective shield, sepa-
rating the brain from the circulatory system of the body. Its
primary function is to restrict the passage of solutes from the
bloodstream into the central nervous system, where neurons
reside [1].

For drugs to effectively act on the brain, they must be
capable of crossing the blood-brain barrier. Conversely, drugs
intended for peripheral action should exhibit limited ability to
penetrate this barrier in order to avoid undesired effects on the
central nervous system. Therefore, it is crucial to determine the
blood-brain barrier permeability of potential drugs. However,
experimental methods for measuring brain-blood permeability
are challenging, time-consuming, expensive, and impractical
for large-scale screening of chemicals [2].

The blood-brain barrier’s highly selective nature enables en-
dothelial cells to tightly regulate the central nervous system’s
homeostasis [3]. This regulation is vital for proper neuronal
function and provides protection against toxins, pathogens,
inflammation, injury, and disease. However, the restrictive
properties of the blood-brain barrier pose a significant obstacle
to drug delivery into the central nervous system. Consequently,
extensive research has been conducted to develop methods
for modulating or circumventing the blood-brain barrier to
enhance therapeutic delivery [1].

The process of brain entry for compounds is multifaceted
and influenced by various factors. Lipophilic drugs, for in-
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stance, can passively diffuse across the blood-brain barrier,
with their ability to form hydrogen bonds playing a role. In
contrast, polar molecules typically face difficulties in crossing
this barrier, although active transport mechanisms can facilitate
their penetration [4]. Local hydrophobicity, ionization profile,
molecular size, lipophilicity, and flexibility are among the
important parameters influencing blood-brain barrier perme-
ation [5].

For compounds targeting the central nervous system, it is
crucial to achieve brain penetration, ensuring the site of action
is reached effectively [6]. Conversely, compounds designed
for peripheral targets should minimize blood-brain barrier
penetration to reduce potential central nervous system-related
side effects. Therefore, selecting compounds with appropriate
brain penetration properties is a critical consideration during
the drug discovery phase [6].

In this paper we focus on producing more powerful results
using smaller datasets, thus increasing the computational effi-
ciency.

The contributions of this paper can be summarized as:
• A GPS Transformer architecture similar to GPS [7] and

GPS++ [8] paired with Self Attention which is able to
perform well in the low-data regime is proposed.

• With this approach a new state-of-the-art for the task
of predicting Blood-Brain Barrier permeability using the
BBBP dataset by Wu, Ramsundar, Feinberg, et al. [9]
was established, and to the best of our knowledge this
is the first work to use Self Attention coupled with the
GPS Transformer to improve models in this domain. A
78.8 ROC-AUC was achieved, beating the current state-
of-the-art [10] by 5.5.

II. RELATED WORK

The paper by Miao, Xia, Chen, et al. [11] proposes a Deep
Learning method for predicting the blood-brain barrier perme-
ability based on clinical phenotypes data. The method aims
to overcome the limitations of existing prediction approaches
that rely on physical characteristics and chemical structure of
drugs, which are typically applicable only to small molecule
compounds that passively diffuse through the BBB.

The Deep Learning method leverages clinical phenotypes
data to train a predictive model. Clinical phenotypes refer to
observable characteristics or traits associated with drugs, such
as drug side effects and drug indications. By incorporating
this information into the prediction model, the method aims
to capture more comprehensive and complex mechanisms of
BBB penetration beyond passive diffusion.



Miao, Xia, Chen, et al. [11] validate their Deep Learning
method using three datasets. The validation results demon-
strate that their approach outperforms existing methods in
terms of prediction accuracy. Specifically, the average accuracy
achieved by their method is 0.97, the area under the receiver
operating characteristic curve (AUC) is 0.98, and the F1 score
is 0.92. These performance metrics indicate a high level of
accuracy in predicting BBB permeability. By incorporating
clinical phenotypes data into the predictive model, the method
demonstrates superior performance compared to existing phys-
ical, chemical, and supervised learning approaches [11].

Jain and Shanmuganathan [12] in their paper address the
limitations of existing models used to predict blood-brain
barrier (BBB) permeability by exploring the role of inflamma-
tion in influencing BBB permeability. Inflammation, measured
through acute phase C-reactive protein (CRP) levels, has been
found to have a direct correlation with BBB permeability. A
threshold of 2.5 µg/ml of CRP is established, above which
BBB impairment is expected.

To overcome the challenges of existing models, a custom-
built dataset of 281 molecules is created, and a machine
learning approach is employed. Initially, different models such
as multi-layer perceptron regression (MPR) and ensemble
models are tested, but they struggle with outliers and lack the
ability to predict descriptors for future drugs. Finally, a fully
connected neural network (FCNN) is chosen as the predictive
logBB model, which performs well in terms of learning the
distribution and achieving lower error levels.

The research also incorporates a neuroinflammation model,
which considers CRP levels alongside the logBB model. Al-
though CRP levels do not directly correlate with logBB values,
the model explores the second and third-order feature deriva-
tives that show significant correlations. A quadratic polynomial
regression model is used to determine this correlation. The
software developed for this research includes preprocessing,
the predictive logBB model, and the neuroinflammation model,
providing a continuous logBB value that represents BBB
permeability based on the patient’s inflammation level. This
approach aims to improve the accuracy of predicting BBB
permeability for drugs and better understand the impact of
inflammation on BBB function.

The study by Saber, Mhanna, and Rihana [13] focuses on
predicting drug permeability across the blood-brain barrier
(BBB) using in silico models. The researchers compare the
performance of sequential feature selection (SFS) and genetic
algorithms (GA) in selecting relevant molecular descriptors
to enhance the accuracy of permeability prediction. Five
different classifiers are trained initially using eight molecular
descriptors, and then SFS and GA are separately applied to
choose the descriptors for each algorithm.

The results show that both SFS and GA improve the
accuracy of the classifiers, but GA outperforms SFS. The
highest accuracy of 96.23% is achieved with GA, specifically
with a fitness function based on the performance of a support
vector machine. The study highlights the significance of the
polar surface area (PSA) of drugs in crossing the BBB. GA
consistently selects the PSA and the number of hydrogen bond
donors as the most relevant descriptors, providing better results

compared to using other features.
The findings suggest that GA is a more robust approach for

selecting relevant descriptors in predicting BBB permeability.
The selected classifiers demonstrate a good balance in predict-
ing BBB+ and BBB- drugs. Accurate in silico BBB models
are crucial for early-phase drug discovery, reducing the need
for extensive in vitro testing and saving time and resources.

The paper by Yuan, Zheng, and Zhan [14] describes the im-
portance of predicting the permeability of compounds through
the blood-brain barrier (BBB) for drug discovery targeting
the brain. It discusses the use of computational methods,
particularly support vector machine (SVM), in predicting BBB
permeability. Different types of descriptors, such as molecular
property-based descriptors (1D, 2D, and 3D descriptors) and
fragment-based descriptors (fingerprints), have been utilized in
SVM models. The selection of descriptors greatly influences
the performance of the SVM model.

The paper aims to develop a new SVM model by com-
bining molecular property-based descriptors and fingerprints
to improve the accuracy of BBB permeability prediction. The
results indicate that the proposed SVM model outperforms
existing models in predicting BBB permeability. The paper
also provides an overview of the blood-brain barrier and the
complex factors that influence compound penetration into the
brain. Additionally, it discusses the classification of quan-
titative and qualitative BBB permeability prediction models
and highlights SVM as a superior method for qualitative
prediction. The paper concludes that the combined use of
property-based descriptors and fingerprints improves the ac-
curacy of SVM models and suggests that similar approaches
may enhance computational predictions for other molecular
activities in the future.

However, our work explores how we find a simple modi-
fication to a General, Powerful, Scalable Graph Transformer
(GPS) Rampášek, Galkin, Dwivedi, et al. [7] and improve
upon the performance for the task of blood-brain barrier per-
meability while showing the effectiveness of simple methods
within the graph setting.

III. DATA

We perform our experiments on the dataset ’BBBP: Binary
labels of blood-brain barrier penetration (permeability)’ which
is a classification dataset available as a part of MoleculeNet [9]
which contains 2,050 molecules and each molecule comes with
a name, label, and SMILES string. The label is a boolean
integer which denotes if a given compound can pass through
the blood-brain barrier or not.

The Blood–brain barrier penetration (BBBP) dataset comes
from a study by Martins, Teixeira, Pinheiro, et al. [15] on
the modeling and prediction of the barrier permeability using
a Bayesian approach. For this well-defined target scaffold
splitting is also recommended by Wu, Ramsundar, Feinberg,
et al. [9].

In the paper by Martins, Teixeira, Pinheiro, et al. [15], a
unique approach based on Bayesian statistics, in conjunction
with state-of-the-art machine learning techniques, was em-
ployed to create a robust model suitable for real-world drug re-
search applications. The dataset used for the Bayesian analysis



consisted of 1970 carefully curated molecules, making it one
of the largest, but still small, datasets used in similar studies.
Various configurations of Random Forests and Support Vector
Machines, coupled with different combinations of chemical
descriptors, were evaluated. To assess the performance of the
models, a 5-fold cross-validation process was employed, and
the best-performing model was further tested on an indepen-
dent validation set.

The model proposed by Martins, Teixeira, Pinheiro, et al.
[15] achieved an impressive overall accuracy of 95%, as
measured by a mean square contingency coefficient (ϕ) of
0.74. Furthermore, this model exhibited a high capacity for
predicting blood-brain barrier (BBB) positives, with an accu-
racy of 83%, and a remarkable accuracy of 96% in determining
BBB negatives. These findings highlight the efficacy of the
developed model in accurately predicting the permeability of
molecules across the blood-brain barrier, based on experiments
by Martins, Teixeira, Pinheiro, et al. [15].

IV. METHODS

The proposed approach closely follows the framework
of General, Powerful, Scalable Graph Transformer (GPS)
by Rampášek, Galkin, Dwivedi, et al. [7] and that of GPS++
by Masters, Dean, Klaser, et al. [8]. This paper explores how
these frameworks could be used to learn from low amounts of
data. Thus, the BBBP dataset was used which contains only
2050 molecules.

A. GPS Block

Masters, Dean, Klaser, et al. [8] proposed that at each
layer, the features are updated by aggregating the output of
an MPNN layer with that of a global attention layer which is
described by the equations below. Note that the edge features
are only passed to the MPNN layer, and that residual connec-
tions with batch normalization [16] are omitted for clarity.
Both the MPNN and GlobalAttn layers are modular, i.e.,
MPNN can be any function that acts on a local neighborhood
and GlobalAttn can be any fully-connected layer.

Xℓ+1,Eℓ+1 = GPSℓ
(
Xℓ,Eℓ,A

)
, (1)

computed as Xℓ+1
M , Eℓ+1 = MPNN ℓ

e

(
Xℓ,Eℓ,A

)
, (2)

Xℓ+1
T = GlobalAttn ℓ

(
Xℓ

)
, (3)

Xℓ+1 = MLPℓ
(
Xℓ+1

M +Xℓ+1
T

)
(4)

where A ∈ RN×N is the adjacency matrix of a graph with
N nodes and E edges; Xℓ ∈ RN×dℓ ,Eℓ ∈ RE×dℓ are the
dℓ-dimensional node and edge features, respectively; MPNN ℓ

e

and GlobalAttn ℓ are instances of an MPNN with edge
features and of a global attention mechanism at the ℓ-th layer
with their corresponding learnable parameters, respectively;
MLPℓ is a 2-layer MLP block.

B. GPS++ Block

Rampášek, Galkin, Dwivedi, et al. [7] proposed the GPS++
block to be defined as follows for layers ℓ > 0:

Xℓ+1,Eℓ+1,gℓ+1 = GPS++
(
Xℓ,Eℓ,gℓ,B

)
(5)

Yℓ, Eℓ+1, gℓ+1 = MPNN
(
Xℓ,Eℓ,gℓ

)
, (6)

Zℓ = BiasedAttn
(
Xℓ,B

)
, (7)

∀i : xℓ+1
i = FFN

(
yℓ
i + zℓi

)
(8)

In GPS++ [8] which is analogous to MPNN modules as
shown by Gilmer, Schoenholz, Riley, et al. [17] and Battaglia,
Hamrick, Bapst, et al. [18], and Bronstein, Bruna, Cohen, et
al. [19]. They indicate that their MPNN variant maximizes the
expressivity of the model and increases the generalizability of
the model.

C. Our Architecture

The proposed block is defined as follows which is similar
to the construction of GPS++ [8].

Xℓ+1,Eℓ+1,gℓ+1 = GPS++
(
Xℓ,Eℓ,gℓ,B

)
(9)

Yℓ, Eℓ+1, gℓ+1 = MPNN
(
Xℓ,Eℓ,gℓ

)
, (10)

Zℓ = Attn
(
Xℓ,B

)
, (11)

∀i : xℓ+1
i = FFN

(
yℓ
i + zℓi

)
(12)

where X0, E0, g0, and B defined in Equation 13.
We do not use the MPNN variant proposed by GPS++ [8] in

our architecture which increases the overfitting considering the
sizes of the datasets we work with. Our approach also incor-
porates Attn which is defined as the standard attention block
from Vaswani, Shazeer, Parmar, et al. [20]. We also find that
for smaller graph datasets standard Attention, modules work
better than Attention variants like Biased self-attention [21]
which was used by GPS++ [8]. The Feed Forward Network is
defined simply as a stack of MLP layers and also uses Drop
GNN [22]. These architectural choices are also summarized
in Figure 1.

With these changes in the Architecture of GPS++, our
approach outperforms GPS++ on smaller datasets and sets a
new state-of-the-art on the BBBP dataset achieving 78.8 ROC-
AUC, beating the current state-of-the-art [10] by 5.5.

V. EXPERIMENTAL SETUP

This section explains the implementation details of the
experiments and our proposed model.

A. Sampling

There is a class imbalance in the dataset, meaning that not
all classes have a similar number of images. For this reason,
we follow a stratified sampling strategy during data loading
to ensure each batch contains 50±5% instances of each label
class.



X0 = Dense(
[
Xatom | XLapVec | XLapVal | XRW | XCent | X3D]) ∈ RN×dnode

E0 = Dense(
[
Ebond | E3D]) ∈ RM×dedge (13)

g0 = Embeddglobal(0) ∈ Rdglobal

B = BSPD +B3D ∈ RN×N

Fig. 1: Overview of the proposed model, notice the architec-
tural changes made from GPS++.

B. Model backbone
Throughout this work GPS [7] and GPS++ [8] is used

as the architecture backbone due to their success in using
MPNNs and Transformers. Our model backbone is standard
self-attention [20] which we demonstrate works well for the
task of molecule property prediction. Since the BBBP dataset
does not contain a large amount of data, other transformer-
based models did not show great results for this task whereas
standard self-attention model with regularization and augmen-
tation techniques, was able to generalize well and achieved
better results.

C. Baseline model
We established a naive baseline with random guesses. The

baseline model we chose was training GPS++ [8] without any
design modifications. This gets to a ROC-AUC of 72.7 on
the BBBP dataset. To train this model, we employ standard
augmentations using AugLiChem [23] and train the network
for 300 epochs with a batch size of 256.

D. Loss function
The final model prediction is formed by global sum-pooling

of all node representations and then passing it through a
MLP. The regression loss is the mean absolute error (L1 loss)
between a scalar prediction and the ground truth.

E. Code
Our code is in PyTorch 1.10 [24] and we also pro-

vide TensorFlow code. We use a number of open-source

packages to develop our training workflows. Most of our
experiments and models were trained with PyTorch Geo-
metric [25]. Our hardware setup for the experiments in-
cluded either four NVIDIA Tesla V100 GPUs or a TPUv3-
8 cluster. We utilized mixed-precision training with Py-
Torch’s native AMP (through torch.cuda.amp) for mixed-
precision training and a distributed training setup (through
torch.distributed.launch) which allowed us to ob-
tain significant boosts in the overall model training time. Our
code to reproduce the results along with Tensorboard logs of
the training runs are available at 1.

VI. RESULTS

We report all results and compare them against previous
models and a random baseline (equivalent to making a guess)
in Table I. The performance of models is calculated using the
metrics that are typical for a molecular property prediction
problem, ROC-AUC. Additionally, it is found that using any of
the other variants of GPS++ is detrimental for this task and the
model starts heavily overfitting even with our design changes,
augmentation, and regularization. We also observe that our
architectural changes over GPS++ [8] improves GPS++ by
6.1%.

TABLE I: Model Performance on the BBBP dataset for
predicting blood-brain membrane permeability.

Method Description ROC-AUC (↑)

GAL 120B [26] 66.1
PretrainGNN [27] 68.7
N-GramRF [28] 69.7
GROVER [29] 70.0
D-MPNN [30] 71.0
ChemRL-GEM [31] 72.4
ChemBERTa-2 [32] 72.8
Uni-Mol [26] 72.9
SPMM [10] 73.3

GPS 72.34
GPS++ 72.73
Ours (GPS Transformer with Self Attention) 78.80

VII. CONCLUSION

This research has provided valuable insights into the chal-
lenges and opportunities associated with drug delivery across
the blood-brain barrier. By understanding the intricate mech-
anisms of brain entry and the parameters influencing blood-
brain barrier permeation, this paper have paved the way for
the development of novel strategies in the field of therapeutic

1https://github.com/Rishit-dagli/GraphBRAIN
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delivery. The introduction of GPS Transformer architecture,
combined with Self Attention, has demonstrated significant
advancements in predicting blood-brain barrier permeability
using limited data. Notably, the approach has surpassed the
current state-of-the-art performance, as evidenced by achieving
an impressive ROC-AUC of 78.8. This breakthrough opens
up new possibilities for efficient and effective drug discovery
and development, ultimately aiming to improve treatments for
central nervous system disorders. The findings contribute to
the bigger vision of enhancing patient care by enabling tar-
geted drug delivery to the brain, thus revolutionizing common
practices and offering hope for transformative advancements
in neurological medicine.
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